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FOREWORD

This report is the text of the James 1. Mueller Memorial Lecture presented at the invita-
tion of the Engineering Ceramics Division of the American Ceramic Society at the Sixteenth
Conference on Composites and Advanced Ceramics in Cocoa Beach, FL on 8 January 1992.
The lecture is dedicated to the memory of our late colleague and mentor, Dr. James 1.
Mueller. Some of his important contributions to what has become an outstanding annual
meeting are summarized below.

The first "Cocoa Beach Meeting" attended by the author was the Fourth Conference
on Composites and Advanced Ceramics in 1980. At that time, what now comprises two
meetings, totaling six days of concurrent sessions over two weeks, was one niccting with
single sessions. The 1980 conference program totaled 47 papers including one session of
four papers on ceramic matrix composites. Dr. Mueller chaired the plenary session which
at the fourth meeting consisted of only three papers. At that time, meetings of the
Steering Committee, presided by Dr. Mueller, were held in his hotel room as they had
been since the meeting's inception. In addition to these activities, Dr. Mueller also
arranged for the speaker and presided at the banquet. The foregoing are just a few
examples of Dr. Mueller's contributions, both big and small, to the origins of this confer-
ence, and it is no exaggeration to say that without the efforts of Dr. James I. Mueller
there would be no Cocoa Beach Meeting.
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INTRODUCTION

The fabrication and properties of ceramic fibers and composites, as well as oxynitride
glasses, are often crucially affected by high temperature chemistry. For example, the high
temperature performance of carbide and nitride fibers is limited by vapor phase and crystal-
lization processes, and oxynitride glass and glass fiber properties are critically dependent
upon decomposition reactions that occur during glass melting. One the plus side, advan-
tage can be taken of high temperature chemistry to make in situ whisker/fiber composites
and to produce materials with oriented microstructures. Whatever the case, improvement
of process control invariably requires better understanding of process chemistry.

This report deals with three principal topics, all more or less related to silicon nitride,
a long-standing interest of the author. The topics also represent areas in which the under-
standing and control of high temperature chemistry is critical. The first section of the
paper, on carbide fibers and whiskers with high temperature properties suitable for ceramic-
matrix composites (CMCs), draws from the author's experience on the Steering Committee
of the DARPA-Dow Corning program on the development of advanced SiC fibersI and
from a recently completed technology assessment trip to Japan. 2 The second part of the
paper, which discusses in situ Si 3N4-based composites, ties the author's earlier work on re-
action bonded Si 3 N4 and on the kinetics of the a/lp Si3 N4 phase transformation to recent
developments in this emerging technological area. The final part of the paper considers
oxynitride glasses (the grain boundary phase in sintered Si3N4) and recent progress in im-
proving the properties of oxynitride glass fibers, the topic of the author's current research.

FIBERS AND WHISKERS

As indicated in the Introduction, the discussion in this section is limited to fibers and
whiskers of the type that could be considered for use as reinforcements in high performance
CMCs. The discussion is further limited to materials comprised principally of SiC and Si3N4 ,
the fiber and whisker compositions of greatest current interest for CMCs. With one excep-
tion, the fibers considered herein are derived from pyrolysis of fibers spun from organic pre-
cursors. The whiskers, on the other hand, are synthesized directly from high temperature
reactions involving vapor phases.

Carbide and Nitride Fibers

Table I lists commercially available polymer-derived nitride and carbide fibers. The list is
limited to small diameter (10 pmn to 20 um), uncoated continuous fibers of the type likely to
be used in CMCs. Large diameter (100 um or greater) filaments are unlikely to find exten-
sive use in such composites and are, therefore, not included in this discussion. The fibers
listed in Table I are all amorphous (or microcrystalline), nonstoichiometric, and contain signifi-
cant amounts of oxygen (up to 10 wt% or more). All of the fibers are pyrolyzed to their
final compositions at temperatures (1400 0C or less) below which they are likely to be exposed
to during ceramic processing. While glass-ceramic matrix composites have admittedly been suc-
cessfully fabricated with "Nicalon" silicon carbide fibers by minimizing processing time at high,
temperatures, 3 the types of fibers listed in Table I are thermally unstable and generally of lim-
ited utility for the fabrication of CMCs; processing of the latter more typically requires long
hold times at high temperatures.



Table 1. COMMERCIALLY AVAILABLE POLYMER-DERIVED CARBIDE AND NITRIDE CERAMIC FIBERS

Fiber Precursor Source Remarks

SI-C-O "Nicamon" PCS Nippon Carbon Co. Contains free C, high in 0, unstable above 12000C.

SI-N-C-0 "HPZ HPZ Dow Coming Corp. Amorphous, improved high temperature behavior
compared to earlier fibers.

Si-N-O "SNF" PSZ Tonen Corp. Amorphous, crystallizes above 14000C.

Si-TI-C-O 'Tyranno" PTC Ube Corp. Amorphous, crystallizes above 14000C.

The high temperature instabilities of polymer-derived ceramic fibers result from several
processes. The free carbon contained in carbide fibers generates thermal decomposition
reactions such as the following:

C(s) + SiO 2(s) = CO(g) + SiO(g). (1)

Undesirable effects of such decomposition include reduction of fiber strength by formation of
pores and channels, and also by formation of voids in the matrix if the latter contains a
significant amount of glass.

When heated to temperatures above 12000 C, nitride fibers of the type in Table 1 are
susceptible to oxygen uptake that results in substantial strength loss.

Furthermore, since all of the fibers under consideration are amorphous or poorly crystal-
line, heat treatment for significant times at above 13000C or so induces crystallization. Forma-
tion of coarse crystalline grains also greatly reduces fiber strength.

In view of the above, it is evident that further development is needed to produce a con-
tinuous, polymer-derived, carbide or nitride ceramic fiber capable of retaining its properties
under the rigorous fabrication conditions required for most CMCs. Ideally, the improved
fiber would still be small in diameter (10 /m to 20 um) but have enhanced high temperature
stability. Required for improved fiber thermal stability are lower oxygen contents, stoichiomet-
nic chemical compositions (no excess C or 0), and uniform, fine-grained crystalline microstructures.

Table 2 summarizes current activity along the guidelines suggested above on the develop-
ment of carbide and nitride fibers with improved thermal stability. It is clear from Table 2
that the thermal stability problem is well recognized and receiving considerable attention as is
indeed essential to progress in the development of viable fiber-reinforced CMCs.

Table 2. CARBIDE AND NITRIDE CERAMIC FIBERS UNDER DEVELOPMENT

Fiber Precursor Reference Remarks

SI-C PCs 4 Radiation cured, low 0 fiber. Retains strength at 15000C.

SI-C PCs, BSZ 5 Crystalline SIC. Excellent strength retention to -600°C.

Si-B-N PBSZ 6 Good high temperature strength and thermal stability.

Si-C SiC 7 Sintered SIC. Good high temperature stability.

B-N MAB 8 BN fiber with excellent high temperature properties.
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NOTE: Glossary of Abbreviations in Tables I and 2; BSZ = Borosilazane; HPZ =
Hydridopolysilazane; MAB = Methylaminoborazine; PBSZ = Polyborosilazane; PCS =

Polycarbosilane; PSZ = Polysilazane; PTC = Polytitanocarbosilane; and SiC = Silicon carbide.

The high oxygen contents of many polymer-derived fibers stem from the air cure required
to polymerize the precursor fibers. Approaches to the production of low oxygen polymer-
derived fibers include changing to a radiation cure instead of an air cure, 4 and using precur-
sors that pyrolyze to low oxygen compositions. '6'8 An alternative approach is to make fibers
by sintering fibrous precursors of particulate, crystalline SiC.7 Strength loss from fiber crystalli-
zation can be minimized by making fibers that are crystalline and stoichiometric to begin
with, 5'7 or by the selection of compositions that resist crystallization when heated to high
temperatures.

While it is encouraging that the problem of high temperature instability is well recog-
nized and the subject of active research, fiber availability is a critical consideration to
fabricators of CMCs. It is unlikely that any of the fibers listed in Table 2 will be commer-
cially available in the next several years and, in any event, the extent of application of the
fibers depends upon their being readily obtainable and affordable. A key to the latter con-
siderations is the size of the market that develops for the fibers; something difficult to esti-
mate at present. Therefore, while it is recognized that continuous fibers will always be
needed for certain applications in which highly directional properties are required, it seems
worthwhile to consider alternative composite systems, and the following discusses some of
those alternative concepts.

Carbide and Nitride Whiskers

In contrast to the situation regarding continuous fibers, crystalline, stoichiometric, SiC,
and Si3N4 whiskers are readily available commercially.9"11 The whiskers are formed via
inorganic vapor phase reactions similar to the following example for SiC:

SiO(g) + C(s) = SiCw(s) + 1/2 02(g). (2)

Whiskers are typically 0.1 um to 1.5 Am in diameter with aspect ratios (length/diameter)
from 20 to 200. Additionally, the whiskers are stoichiometric and crystalline, giving them
good high temperature stability. Significant problems, however, are difficulties in handling and
incorporating whiskers into composites and, possibly even more important, the potential health
hazards from dealing with such fine, sometimes dendritic materials. Discussed in the following
section are some alternative approaches to obtaining materials with the advantages of whisker-
reinforced structures bu. without the handling problems and health hazards associated with
whiskers.

Si3N4-BASED IN SITU COMPOSITES

In the past few years interest has increased in alternative approaches to obtaining the
benefits of composite-type microstructures without the problems of incorporation and achieving
a uniform distribution of a second phase. Considered in this section are the formation of
whiskers in situ in sintered or reaction bonded Si3 N 4 , and the fabrication of sintered Si3 N 4

with oriented microstructures. Both of these approaches have been employed successfully to

produce silicon nitride materials with fracture toughnesses and strengths comparable to those

of composites fabricated from physical mixtures of components.
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Whisker-Reinforced S%3N4 Materials

Figures 1 through 3, from an early study of the a/l Si3N4 transformation, 12'13 illustrate
an interesting phenomenon that has more recently been taken advantage of to fabricate
sintered Si3N4 materials reinforced with SiC whiskers formed in situ.14 R 6 The SiC whiskers
shown in the figures resulted from merely heating Si 3N4 powder at 16000 C in a graphite cruci-
ble in oxygen-contaminated N2. As shown in Figure 3, no such whiskers appeared in Si 3N4
powder heated for 10 hours at the same temperature in oxygen-free N2. A mechanism for
the formation of SiC in Si 3N4 (without reference to whiskers) had been proposed earlier by
Colquohoun, et al., 17 and the chemistry of the process is illustrated in Figure 4. As shown
in the figure, SiC whiskers form via the reaction of CO gas with the Si 3N4 powder. One
likely source of CO is reaction of residual 02 in the system with the graphite crucible. Also,
as suggested by Colquohoun et al., the SiO gas produced by the SiC-forming reaction can com-
bine with C (from the crucible) to form additional CO. Considering that in the example
shown the graphite crucible represents essentially an infinite sink for carbon, the reaction is
self-sustaining as long as the Si3N4 remains at temperature.

As indicated above, several laboratories14"16 have reported success in forming in situ Si3N4-
matrix composites reinforced with SiC whiskers. In the references cited, the carbon source is
C powder which is mixed with Si3N4 and Si0 2 to form the starting material. The powder
mixtures are subsequently hot pressed to obtain dense composites. Whisker contents as high
as 25 wt% have been realized by heat treatment for two hours at 17000C.15 Song and Liu 6

reported a modulus of rupture of 649 MPa and fracture toughness of 8.0 MPa*m"2 for a
hot-pressed composite containing 15 vol% SiC whiskers, both impressively high whatever the
preparation method and indicative of the considerable potential of this family of materials.

Another possible but as yet unexploited approach to the fabrication of Si 3N4 composites
is illustrated in Figure 5.18 a-Si3N4 whiskers, such as the ones evident in the figure, are
often observed in the nitridation of Si powder compacts to form reaction bonded Si 3N4
(RBSN). The drops at the tips of the whiskers suggest that they formed via the VLS
(Vapor-Liquid-Solid) mechanism first proposed by Wagner and Ellis1 9 for the growth of Si
whiskers.

The likely VLS mechanism that applies to Si 3N4 is illustrated in Figure 6. Scanning elec-
tron microscopy (SEM) analysis indicates that the liquid drop at the tip of the whisker is an
iron silicide (Fe being a common contaminant in commercial Si powder),18 and the likely
source of Si in the vapor phase is SiO gas. As illustrated in Figure 6, the gaseous reactants
dissolve in the liquid to precipitate Si3N4 at the solid-liquid interface, thus providing a means
of growing the extremely elongated crystals in Figure 5 and, potentially, an in situ composite
type of microstructure. Figure 7 is a SEM photomicrograph of a RBSN specimen containing
visible quantities of a fibrous phase and illustrating the possibility of forming a duplex Si 3N4
microstructure. 20 While intriguing, no evidence exists to show that such microstructures pro-
vide significant toughening, and whether or not these duplex structures can be exploited to
fabricate tough composites is an open question.

Sintered Sl3N4 with Oriented Microseluturee

Another interesting approach to the formation of composite-like Si 3N4 bodies is to take
advantage of the propensity of Si3N4 to form high aspect ratio grains under certain condi-
tions. An example of the growth of high aspect ratio grains of fl-Si3N4 from the liquid phase
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is shown in Figure 8 from a study of the a/fl Si 3N4 phase transformation. 13 That figure
shows the development of elongated grains in Si 3N4 powder heated with MgO for various
lengths of time at 16000C. Figure 9 illustrates, schematically, the process through which the
columnar grains formed.

While clearly different from the VLS mechanism discussed above, the solid-liquid process
shown in Figure 9 produces a similar result; i.e., high aspect ratio crystals. Moreover, it is
well documented in the literature on crystal growth that the aspect ratio of such crystals
depends upon the chemistry of the liquid from which they are grown,21 and full advantage of
this behavior has been taken by Pyzik and coworkers to produce "self-reinforced Si 3N4" with
impressive properties. 22-24 That group has already reported the fabrication of pressure
sintered Si 3N4 bodies with bend strengths of 1200 MPa and fracture toughness, KIC, values
of 10 MPa*m1/2 (as compared to around 5 MPa*m/2 for material without preferred orienta-
tion). Clearly, this approach has great potential for the production of composite-like micro-
structures without the need for mixing separate components, and this research area is
deservedly one of considerable current interest.

OXYNITRIDE GLASSES AND GLASS FIBERS

The author's current research on oxynitride glasses25 originated from interest in examining
in detail the properties of the glassy grain boundary phase in sintered Si 3N4. In view of the
outstanding properties of the latter material, and considering that fracture was known to be
intergranular in sintered Si3N4, it was felt that the grain boundary glass would be an interest-
ing material in its own right. Furthermore, the properties and high temperature chemistry of
the glass are relevant to Si 3N4 technology and, thus, a logical subject for inclusion in this
paper.

Oxynitride Glases

Figure 10, after Risbud,26 schematically shows the structure of an oxynitride glass and
illustrates why the properties of the glass are enhanced by the substitution of N for 0 in the
glass structure. While the details require further investigation, this undoubtedly oversimplified
picture shows that the substituted N is bonded to three Si atoms rather than two as is the
case for 0. The result is tighter structure and a glass that is harder and has an increased
elastic modulus; also, the melting temperature and density increase although the increase in
modulus is considerably more than would be expected from the density increase. Additional
advantages of oxynitride glasses are considered elsewhere,27 and it is now well established that
such glasses have the potential for providing properties superior to any known oxide glasses.
In accordance with the theme of this papcr, however, the realization of that potential
requires a better understanding and control of the high temperature chemistry of oxynitride
glass systems.

A major problem with oxyritride glasses of any composition is illustrated by Figure 11
showing two large disks of Y-Si-AI-O-N glass. The glass from which both specimens origi-
nated was made in a hot isostatic press unde- high N2 pressure.28 While one disk is obvi-
ously very clear and transparent, the other exhibits black cloudy areas. Extensive optical
microscopy on various oxynitride glasses has shown that the black clouds consist of metallic
inclusions similar to those apparent in the photomicrographs in Figure 12. The inclusions
have been shown by SEM to be Si-rich often containing Fe when the latter is present as an
impurity in the glass.29 In more recent glasses with improved purity and homogeneity, the
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inclusions are finer and more uniformly distributed giving the glass a uniform grey color. In
addition to reducing transparency, the metallic inclusions represent strength limiting defects in
the glass; the latter being particularly significant in the oxynitride glass fibers discussed below.

These colloidal, Si-rich metallic defects, while a key problem in oxynitride glasses, and pos-
sibly of significant influence in the glassy, grain boundary phase in sintered Si3N4 as well,
have received scant attention in the literature. The most significant observations on the sub-
ject were made by Kelen and Mulfinger30 who, based upon their studies of the solution of N
in glass, and also on earlier work by Zintl, 3 1 and by Geld and Esin, 32 proposed the mecha-
nism illustrated in Figure 13 for the formation of colloidal Si precipitates in glass. Interest-
ingly, this phenomenon has little if anything to do with the presence of N in the glass. It
merely reflects the fact that the glass is produced in a highly reducing atmosphere. Under
such conditions, oxygen loss from the melt results in the formation of divalent Si which ap-
pears to be stable in solution at high temperatures. As shown in Figure 13, however, when
the glass is cooled the divalent Si disproportionates into tetravalent Si and elemental Si; the
latter condensing as colloidal precipitate particles.

Oxynitride Glass Fibers

The potential advantages of oxynitride glasses over conventional oxide glasses have led to
interest by the U.S. Army in the possible use of oxynitride glass fibers in high performance
composites. A potential application of such composites, a hull for an infantry fighting vehi-
cle, is illustrated in Figure 14. An oxide glass fiber/resin matrix composite has already been
successfully tested for that application, and oxynitride glass fibers could provide some of the
additional advantages indicated in the figure. While impressively high elastic modulus values
have been achieved for oxynitride glass fibers,25 tensile strengths thus far obtained are unac-
ceptably low for the type of composite shown in Figure 14. The key to improvement in fiber
tensile strength is better understanding and control of the high temperature chemistry of
glass, and fiber processing and recent progress along those lines is summarized below.

The apparatus employed for making oxynitride glass fibers at the U.S. Army Materials
Technology Laboratory (MTL) is shown in Figure 15.3 Recent efforts have been concen-
trated on making fibers from glasses in the system Mg-Si-AI-O-N. Glass compositions are sim-
ilar to "S" glass (an Al-Mg-Si oxide) with 3 atomic % to 4 atomic % N substituted for some
of the oxygen. Fibers are drawn from premelted glass contained in the molybdenum cruci-
bles. The crucibles are inductively heated in N2 to the drawing temperature of around
1550°C; the exact temperature depending upon glass composition. Fibers as small as 8 pm to
10 um in diameter have been drawn at rates as high as 1500 m/min. The elastic moduli of
the fibers range from 105 GPa to 110 GPa as compared to 85 GPa for "S" glass which is the
highest performance commercially available oxide glass fiber.34

As mentioned above, progress in improving the tensile strength of our oxynitride glass fibers
has come mainly through understanding of process chemistry. Before proccss improvements, the
fibers often failed from internal defects, one of which is shown in Figure 16. This fiber failed
from a pm-sized inclusion identified by SEM as iron silicide. This type of defect, similar to the
inclusions seen in Figure 12 and worsened by the presence of Fe impurities, was eliminated, and
tensile strength consequently improved, by eliminating Fe contamination in the glass batch.
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Although some earlier evidence indicated that glass quality was improved by batching with
AlN rather than Si3N4, Figure 17 shows a fiber failure from an inclusion rich in Al. -ne lat-
ter probably came from unreactee Al in the AIN powder used to formulate the glass batch.
This example, as well as the foregoing one about Fe, illustrates another consequence of melt-
ing the glass in a reducing atmosphere; the impurities remain metallic rather than being oxi-
dized to metal ions as would be the case for melting in air.

Increases in oxynitride glass fiber strength from research on improved glass and fiber pro-
cessing are summarized in Figure 18. The data shown are for work over a period of about
two years on fibers of the same Mg-Si-AI-O-N glass composition. The tensile strength in-
creases are mostly attributable to improved process chemistry. Steps found to be particularly
important include: (1) The elimination of undesirable impurities, specifically Fe and metallic
Al, (2) Premelting of the oxide part of the glass in air before adding Si3N4 and melting in
N2, and (3) Double melting of the glass to improve homogeneity. The results shown in
Figure 18 were admittedly obtained only for the purpose of improving our oxynitride glass
fibers. It is not unreasonable, however, to speculate that similar considerations apply to the
glassy grain boundary phase in sintered Si 3N4. Along the same lines, it could be further
argued that the properties of sintered Si3N4 could benefit from better control of the high
temperature chemistry of the glazs phase.

CONCLUSIONS

High temperature chemistry plays a crucial role in the processing and performance of
Si 3N4 and related materials. While high temperature reactions can produce problems such as
critical defects in oxynitride glasses and fibers, they can also provide opportunities such as in
the formation of Si 3N4 composites containing in situ SiC whisker reinforcements. In any
event, understanding and control of high temperature chemistry is essential to the fabrication
of high performance composites and engineering ceramics.
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Figure 1. 99% pure a-silicon nitride powder as-received,
scanning electron photomicrograph. Ref. 13.

Figure 2. Silton carbide whiskers In silicon nitride Powder after heat
trestmnent at I1600 0C in nitrogen contamninated with oxygen, scanning
Meleton p!hotoinicrograph, Rdf. 13.
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0 (g)
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(® SiO (g) + 2 C (s) =CO (g) + SiC (g)
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( 3CO (g) + Si3 N 4 (s) = 2 SiCw(s) + 2 N 2 (g) + CO 2 (g) + SiO (g)

Figure 4. Mechanism for silicon carbide formation
in a silicon nitride powder compact.

Figure 5. a-silcon nkride whiskers formed during reaction bonding of
a silicon powder compact. The drops at the tips of the whiskers sug"
gat that growth occurred by a VAS mechanism, optical photomicro-
graph, transmitted ,ght Ref. 16.
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Figure 6. Growth of a-silicon nitride whiskers by the VLS mechanism.
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Figure 7. Fracture section of a reaction bonded silicon nitride specimen showing extensive
whisker formation In voids, scanning electron photomicrographs, Ref. 20.
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Figure 9. Growth of high aspect ratio P silicon nitride crystals from the liquid.
The aspect ratio depends upon the chemistry of the liquid.
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Figure 10. SchemtIc two-dimension view of the network structure of oxynftrde
glasses based on metal-silicon-oxygen systems, Ref. 26.
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Figure 15. Schematic representation of the system employed for drawing oxynitride glass fibers, Ref. 33.
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